Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

[Selenium compounds in redox regulation of inflammation and apoptosis].

Identifieur interne : 000099 ( Main/Exploration ); précédent : 000098; suivant : 000100

[Selenium compounds in redox regulation of inflammation and apoptosis].

Auteurs : N Y Rusetskaya [Russie] ; I V Fedotov [Russie] ; V A Koftina [Russie] ; V B Borodulin [Russie]

Source :

RBID : pubmed:31258141

Descripteurs français

English descriptors

Abstract

Monocytes and macrophages play a key role in the development of inflammation: under the action of lipopolysaccharides (LPS), absorbed from the intestine, monocytes and macrophages form reactive oxygen species (ROS) and cytokines, this leads to the development of oxidative stress, inflammation and/or apoptosis in all types of tissues. In the cells LPS induce an "internal" TLR4-mediated MAP-kinase inflammatory signaling pathway and cytokines through the superfamily of tumor necrosis factor receptor (TNFR) and the "death domain" (DD) initiate an "external" caspase apoptosis cascade or necrosis activation that causes necroptosis. Many of the proteins involved in intracellular signaling cascades (MYD88, ASK1, IKKa/b, NF-kB, AP-1) are redox-sensitive and their activity is regulated by antioxidants thioredoxin, glutaredoxin, nitroredoxin, and glutathione. Oxidation of these signaling proteins induced by ROS enhances the development of inflammation and apoptosis, and their reduction with antioxidants, on the contrary, stabilizes the signaling cascades speed, preventing the vicious circle of oxidative stress, inflammation and apoptosis that follows it. Antioxidant (AO) enzymes thioredoxin reductase (TRXR), glutaredoxin reductase (GLRXR), glutathione reductase (GR) are required for reduction of non-enzymatic antioxidants (thioredoxin, glutaredoxin, nitroredoxin, glutathione), and AO enzymes (SOD, catalase, GPX) are required for ROS deactivation. The key AO enzymes (TRXR and GPX) are selenium-dependent; therefore selenium deficiency leads to a decrease in the body's antioxidant defense, the development of oxidative stress, inflammation, and/or apoptosis in various cell types. Nrf2-Keap1 signaling pathway activated by selenium deficiency and/or oxidative stress is necessary to restore redox homeostasis in the cell. In addition, expression of some genes is changed with selenium deficiency. Consequently, growth and proliferation of cells, their movement, development, death, and survival, as well as the interaction between cells, the redox regulation of intracellular signaling cascades of inflammation and apoptosis, depend on the selenium status of the body. Prophylactic administration of selenium-containing preparations (natural and synthetic (organic and inorganic)) is able to normalize the activity of AO enzymes and the general status of the body. Organic selenium compounds have a high bioavailability and, depending on their concentration, can act both as selenium donors to prevent selenium deficiency and as antitumor drugs due to their toxicity and participation in the regulation of signaling pathways of apoptosis. Known selenorganic compounds diphenyldiselenide and ethaselen share similarity with the Russian organo selenium compound, diacetophenonylselenide (DAPS-25), which serves as a source of bioavailable selenium, exhibits a wide range of biological activity, including antioxidant activity, that governs cell redox balance, inflammation and apoptosis regulation.

DOI: 10.18097/PBMC20196503165
PubMed: 31258141


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">[Selenium compounds in redox regulation of inflammation and apoptosis].</title>
<author>
<name sortKey="Rusetskaya, N Y" sort="Rusetskaya, N Y" uniqKey="Rusetskaya N" first="N Y" last="Rusetskaya">N Y Rusetskaya</name>
<affiliation wicri:level="1">
<nlm:affiliation>Razumovsky Saratov State Medical University, Saratov, Russia.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Razumovsky Saratov State Medical University, Saratov</wicri:regionArea>
<wicri:noRegion>Saratov</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fedotov, I V" sort="Fedotov, I V" uniqKey="Fedotov I" first="I V" last="Fedotov">I V Fedotov</name>
<affiliation wicri:level="1">
<nlm:affiliation>Razumovsky Saratov State Medical University, Saratov, Russia.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Razumovsky Saratov State Medical University, Saratov</wicri:regionArea>
<wicri:noRegion>Saratov</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Koftina, V A" sort="Koftina, V A" uniqKey="Koftina V" first="V A" last="Koftina">V A Koftina</name>
<affiliation wicri:level="1">
<nlm:affiliation>Razumovsky Saratov State Medical University, Saratov, Russia.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Razumovsky Saratov State Medical University, Saratov</wicri:regionArea>
<wicri:noRegion>Saratov</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Borodulin, V B" sort="Borodulin, V B" uniqKey="Borodulin V" first="V B" last="Borodulin">V B Borodulin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Razumovsky Saratov State Medical University, Saratov, Russia.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Razumovsky Saratov State Medical University, Saratov</wicri:regionArea>
<wicri:noRegion>Saratov</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31258141</idno>
<idno type="pmid">31258141</idno>
<idno type="doi">10.18097/PBMC20196503165</idno>
<idno type="wicri:Area/Main/Corpus">000133</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000133</idno>
<idno type="wicri:Area/Main/Curation">000133</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000133</idno>
<idno type="wicri:Area/Main/Exploration">000133</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">[Selenium compounds in redox regulation of inflammation and apoptosis].</title>
<author>
<name sortKey="Rusetskaya, N Y" sort="Rusetskaya, N Y" uniqKey="Rusetskaya N" first="N Y" last="Rusetskaya">N Y Rusetskaya</name>
<affiliation wicri:level="1">
<nlm:affiliation>Razumovsky Saratov State Medical University, Saratov, Russia.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Razumovsky Saratov State Medical University, Saratov</wicri:regionArea>
<wicri:noRegion>Saratov</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fedotov, I V" sort="Fedotov, I V" uniqKey="Fedotov I" first="I V" last="Fedotov">I V Fedotov</name>
<affiliation wicri:level="1">
<nlm:affiliation>Razumovsky Saratov State Medical University, Saratov, Russia.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Razumovsky Saratov State Medical University, Saratov</wicri:regionArea>
<wicri:noRegion>Saratov</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Koftina, V A" sort="Koftina, V A" uniqKey="Koftina V" first="V A" last="Koftina">V A Koftina</name>
<affiliation wicri:level="1">
<nlm:affiliation>Razumovsky Saratov State Medical University, Saratov, Russia.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Razumovsky Saratov State Medical University, Saratov</wicri:regionArea>
<wicri:noRegion>Saratov</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Borodulin, V B" sort="Borodulin, V B" uniqKey="Borodulin V" first="V B" last="Borodulin">V B Borodulin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Razumovsky Saratov State Medical University, Saratov, Russia.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Razumovsky Saratov State Medical University, Saratov</wicri:regionArea>
<wicri:noRegion>Saratov</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biomeditsinskaia khimiia</title>
<idno type="ISSN">2310-6972</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antioxidants (metabolism)</term>
<term>Apoptosis (MeSH)</term>
<term>Glutathione Reductase (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Inflammation (metabolism)</term>
<term>Kelch-Like ECH-Associated Protein 1 (metabolism)</term>
<term>NF-E2-Related Factor 2 (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Selenium (MeSH)</term>
<term>Selenium Compounds (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>Thioredoxin-Disulfide Reductase (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Antioxydants (métabolisme)</term>
<term>Apoptose (MeSH)</term>
<term>Composés du sélénium (métabolisme)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Facteur-2 apparenté à NF-E2 (métabolisme)</term>
<term>Glutathione reductase (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Inflammation (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéine-1 de type kelch associée à ECH (métabolisme)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Sélénium (MeSH)</term>
<term>Thioredoxin-disulfide reductase (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antioxidants</term>
<term>Glutathione Reductase</term>
<term>Kelch-Like ECH-Associated Protein 1</term>
<term>NF-E2-Related Factor 2</term>
<term>Reactive Oxygen Species</term>
<term>Selenium Compounds</term>
<term>Thioredoxin-Disulfide Reductase</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Inflammation</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Antioxydants</term>
<term>Composés du sélénium</term>
<term>Espèces réactives de l'oxygène</term>
<term>Facteur-2 apparenté à NF-E2</term>
<term>Glutathione reductase</term>
<term>Inflammation</term>
<term>Protéine-1 de type kelch associée à ECH</term>
<term>Thioredoxin-disulfide reductase</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Apoptosis</term>
<term>Humans</term>
<term>Oxidation-Reduction</term>
<term>Oxidative Stress</term>
<term>Selenium</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Apoptose</term>
<term>Humains</term>
<term>Oxydoréduction</term>
<term>Stress oxydatif</term>
<term>Sélénium</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Monocytes and macrophages play a key role in the development of inflammation: under the action of lipopolysaccharides (LPS), absorbed from the intestine, monocytes and macrophages form reactive oxygen species (ROS) and cytokines, this leads to the development of oxidative stress, inflammation and/or apoptosis in all types of tissues. In the cells LPS induce an "internal" TLR4-mediated MAP-kinase inflammatory signaling pathway and cytokines through the superfamily of tumor necrosis factor receptor (TNFR) and the "death domain" (DD) initiate an "external" caspase apoptosis cascade or necrosis activation that causes necroptosis. Many of the proteins involved in intracellular signaling cascades (MYD88, ASK1, IKKa/b, NF-kB, AP-1) are redox-sensitive and their activity is regulated by antioxidants thioredoxin, glutaredoxin, nitroredoxin, and glutathione. Oxidation of these signaling proteins induced by ROS enhances the development of inflammation and apoptosis, and their reduction with antioxidants, on the contrary, stabilizes the signaling cascades speed, preventing the vicious circle of oxidative stress, inflammation and apoptosis that follows it. Antioxidant (AO) enzymes thioredoxin reductase (TRXR), glutaredoxin reductase (GLRXR), glutathione reductase (GR) are required for reduction of non-enzymatic antioxidants (thioredoxin, glutaredoxin, nitroredoxin, glutathione), and AO enzymes (SOD, catalase, GPX) are required for ROS deactivation. The key AO enzymes (TRXR and GPX) are selenium-dependent; therefore selenium deficiency leads to a decrease in the body's antioxidant defense, the development of oxidative stress, inflammation, and/or apoptosis in various cell types. Nrf2-Keap1 signaling pathway activated by selenium deficiency and/or oxidative stress is necessary to restore redox homeostasis in the cell. In addition, expression of some genes is changed with selenium deficiency. Consequently, growth and proliferation of cells, their movement, development, death, and survival, as well as the interaction between cells, the redox regulation of intracellular signaling cascades of inflammation and apoptosis, depend on the selenium status of the body. Prophylactic administration of selenium-containing preparations (natural and synthetic (organic and inorganic)) is able to normalize the activity of AO enzymes and the general status of the body. Organic selenium compounds have a high bioavailability and, depending on their concentration, can act both as selenium donors to prevent selenium deficiency and as antitumor drugs due to their toxicity and participation in the regulation of signaling pathways of apoptosis. Known selenorganic compounds diphenyldiselenide and ethaselen share similarity with the Russian organo selenium compound, diacetophenonylselenide (DAPS-25), which serves as a source of bioavailable selenium, exhibits a wide range of biological activity, including antioxidant activity, that governs cell redox balance, inflammation and apoptosis regulation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">31258141</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>08</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>08</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">2310-6972</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>65</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2019</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Biomeditsinskaia khimiia</Title>
<ISOAbbreviation>Biomed Khim</ISOAbbreviation>
</Journal>
<ArticleTitle>[Selenium compounds in redox regulation of inflammation and apoptosis].</ArticleTitle>
<Pagination>
<MedlinePgn>165-179</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.18097/PBMC20196503165</ELocationID>
<Abstract>
<AbstractText>Monocytes and macrophages play a key role in the development of inflammation: under the action of lipopolysaccharides (LPS), absorbed from the intestine, monocytes and macrophages form reactive oxygen species (ROS) and cytokines, this leads to the development of oxidative stress, inflammation and/or apoptosis in all types of tissues. In the cells LPS induce an "internal" TLR4-mediated MAP-kinase inflammatory signaling pathway and cytokines through the superfamily of tumor necrosis factor receptor (TNFR) and the "death domain" (DD) initiate an "external" caspase apoptosis cascade or necrosis activation that causes necroptosis. Many of the proteins involved in intracellular signaling cascades (MYD88, ASK1, IKKa/b, NF-kB, AP-1) are redox-sensitive and their activity is regulated by antioxidants thioredoxin, glutaredoxin, nitroredoxin, and glutathione. Oxidation of these signaling proteins induced by ROS enhances the development of inflammation and apoptosis, and their reduction with antioxidants, on the contrary, stabilizes the signaling cascades speed, preventing the vicious circle of oxidative stress, inflammation and apoptosis that follows it. Antioxidant (AO) enzymes thioredoxin reductase (TRXR), glutaredoxin reductase (GLRXR), glutathione reductase (GR) are required for reduction of non-enzymatic antioxidants (thioredoxin, glutaredoxin, nitroredoxin, glutathione), and AO enzymes (SOD, catalase, GPX) are required for ROS deactivation. The key AO enzymes (TRXR and GPX) are selenium-dependent; therefore selenium deficiency leads to a decrease in the body's antioxidant defense, the development of oxidative stress, inflammation, and/or apoptosis in various cell types. Nrf2-Keap1 signaling pathway activated by selenium deficiency and/or oxidative stress is necessary to restore redox homeostasis in the cell. In addition, expression of some genes is changed with selenium deficiency. Consequently, growth and proliferation of cells, their movement, development, death, and survival, as well as the interaction between cells, the redox regulation of intracellular signaling cascades of inflammation and apoptosis, depend on the selenium status of the body. Prophylactic administration of selenium-containing preparations (natural and synthetic (organic and inorganic)) is able to normalize the activity of AO enzymes and the general status of the body. Organic selenium compounds have a high bioavailability and, depending on their concentration, can act both as selenium donors to prevent selenium deficiency and as antitumor drugs due to their toxicity and participation in the regulation of signaling pathways of apoptosis. Known selenorganic compounds diphenyldiselenide and ethaselen share similarity with the Russian organo selenium compound, diacetophenonylselenide (DAPS-25), which serves as a source of bioavailable selenium, exhibits a wide range of biological activity, including antioxidant activity, that governs cell redox balance, inflammation and apoptosis regulation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rusetskaya</LastName>
<ForeName>N Y</ForeName>
<Initials>NY</Initials>
<AffiliationInfo>
<Affiliation>Razumovsky Saratov State Medical University, Saratov, Russia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fedotov</LastName>
<ForeName>I V</ForeName>
<Initials>IV</Initials>
<AffiliationInfo>
<Affiliation>Razumovsky Saratov State Medical University, Saratov, Russia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Koftina</LastName>
<ForeName>V A</ForeName>
<Initials>VA</Initials>
<AffiliationInfo>
<Affiliation>Razumovsky Saratov State Medical University, Saratov, Russia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Borodulin</LastName>
<ForeName>V B</ForeName>
<Initials>VB</Initials>
<AffiliationInfo>
<Affiliation>Razumovsky Saratov State Medical University, Saratov, Russia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>rus</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<VernacularTitle>Soedineniia selena v redoks-reguliatsii vospaleniia i apoptoza.</VernacularTitle>
</Article>
<MedlineJournalInfo>
<Country>Russia (Federation)</Country>
<MedlineTA>Biomed Khim</MedlineTA>
<NlmUniqueID>101196966</NlmUniqueID>
<ISSNLinking>2310-6905</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000975">Antioxidants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000072019">Kelch-Like ECH-Associated Protein 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051267">NF-E2-Related Factor 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018036">Selenium Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.7</RegistryNumber>
<NameOfSubstance UI="D005980">Glutathione Reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="D013880">Thioredoxin-Disulfide Reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>H6241UJ22B</RegistryNumber>
<NameOfSubstance UI="D012643">Selenium</NameOfSubstance>
</Chemical>
</ChemicalList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000975" MajorTopicYN="N">Antioxidants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017209" MajorTopicYN="Y">Apoptosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005980" MajorTopicYN="N">Glutathione Reductase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007249" MajorTopicYN="N">Inflammation</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072019" MajorTopicYN="N">Kelch-Like ECH-Associated Protein 1</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051267" MajorTopicYN="N">NF-E2-Related Factor 2</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="Y">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012643" MajorTopicYN="N">Selenium</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018036" MajorTopicYN="N">Selenium Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013880" MajorTopicYN="N">Thioredoxin-Disulfide Reductase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherAbstract Type="Publisher" Language="rus">
<AbstractText>Monotsity i makrofagi igraiut kliuchevuiu rol' v razvitii vospaleniia, poskol'ku pod deĭstviem postupivshikh iz kishechnika lipopolisakharidov (LPS) v nikh obrazuiutsia aktivnye formy kisloroda (AFK) i tsitokiny, chto privodit k razvitiiu okislitel'nogo stressa, vospaleniia i/ili apoptoza vo vsekh tipakh tkaneĭ. V kletkakh LPS indutsiruiut “vnutrenniĭ” TLR4-oposredovannyĭ MAR-kinaznyĭ signal'nyĭ put' vospaleniia, a tsitokiny cherez supersemeĭstvo retseptorov faktora nekroza opukholi (TNFR) i “domen smerti” (DD) initsiiruiut “vneshniĭ” kaspaznyĭ kaskad apoptoza ili aktivatsiiu nekrosom, privodiashchuiu k nekroptozu. Mnogie belki-uchastniki vnutrikletochnykh signal'nykh kaskadov (MYD88, ASK1, IKKa/b, NF-kB, AP-1) iavliaiutsia redoks-chuvstvitel'nymi, i ikh aktivnost' reguliruetsia antioksidantami tioredoksinom, glutaredoksinom, nitroredoksinom i glutationom. Okislenie signal'nykh belkov pod deĭstviem AFK usilivaet razvitie vospaleniia i apoptoz, a ikh vosstanovlenie antioksidantami, naprotiv, stabiliziruet skorost' signal'nykh kaskadov, predotvrashchaia porochnyĭ krug okislitel'nogo stressa i sleduiushchego za nim vospaleniia i apoptoza. Dlia vosstanovleniia nefermentativnykh antioksidantov (tioredoksin, glutaredoksin, nitroredoksin, glutation) neobkhodimy sootvetstvuiushchie fermenty (tioredoksinreduktaza, TRXR; glutaredoksinreduktaza, GLRXR; glutationreduktaza, GR), a dlia obezvrezhivaniia AFK trebuiutsia antioksidantnye (AO) fermenty (superoksiddismutaza, SOD, katalaza, glutationperoksidaza, GPX). Kliuchevye AO fermenty (TRXR i GPX) iavliaiutsia selenzavisimymi, poétomu selendefitsitnye sostoianiia vlekut za soboĭ snizhenie antioksidantnoĭ zashchity organizma, razvitie okislitel'nogo stressa, vospaleniia i apoptoza v razlichnykh tipakh kletok. Pri selenodefitsite i/ili okislitel'nom stresse aktiviruetsia Nrf2-Keap1 signal'nyĭ put', neobkhodimyĭ dlia vosstanovleniia dinamicheskogo redoks-gomeostaza v kletke. Krome togo, pri selenodefitsite izmeniaetsia ékspressiia nekotorykh genov. Sledovatel'no, ot selenovogo statusa organizma zavisiat rost i proliferatsiia kletok, ikh dvizhenie, razvitie, gibel' i vyzhivanie, a takzhe vzaimodeĭstvie mezhdu kletkami, redoks-reguliatsiia vnutrikletochnykh signal'nykh kaskadov vospaleniia i apoptoza. Profilakticheskiĭ priem selensoderzhashchikh preparatov (prirodnykh i sinteticheskikh (organicheskikh i neorganicheskikh)) sposoben normalizovat' aktivnost' antioksidantnykh fermentov i v tselom redoks-status organizma. Organicheskie soedineniia selena imeiut vysokuiu biodostupnost' i v zavisimosti ot kontsentratsii mogut vystupat' kak v roli donorov selena dlia bor'by s selenodefitsitom, tak i v kachestve protivoopukholevykh preparatov, blagodaria svoeĭ toksichnosti i uchastiiu v reguliatsii signal'nykh puteĭ apoptoza. Izvestnye selenoorganicheskie soedineniia difenildiselenid i étaselen proiavliaiut skhodstvo s rossiĭskim selenoorganicheskim soedineniem diatsetofenonilselenidom (DAFS-25), kotoryĭ sluzhit istochnikom biodostupnogo selena, proiavliaet shirokiĭ spektr biologicheskoĭ aktivnosti, vkliuchaia antioksidantnuiu aktivnost', blagodaria kotoroĭ vozmozhna reguliatsiia redoks-balansa kletki, vospaleniia i apoptoza.</AbstractText>
</OtherAbstract>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">DAPS-25</Keyword>
<Keyword MajorTopicYN="N">apoptosis</Keyword>
<Keyword MajorTopicYN="N">inflammation</Keyword>
<Keyword MajorTopicYN="N">oxidative stress</Keyword>
<Keyword MajorTopicYN="N">selenium</Keyword>
<Keyword MajorTopicYN="N">signal cascades</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>7</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>7</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>8</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31258141</ArticleId>
<ArticleId IdType="doi">10.18097/PBMC20196503165</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Russie</li>
</country>
</list>
<tree>
<country name="Russie">
<noRegion>
<name sortKey="Rusetskaya, N Y" sort="Rusetskaya, N Y" uniqKey="Rusetskaya N" first="N Y" last="Rusetskaya">N Y Rusetskaya</name>
</noRegion>
<name sortKey="Borodulin, V B" sort="Borodulin, V B" uniqKey="Borodulin V" first="V B" last="Borodulin">V B Borodulin</name>
<name sortKey="Fedotov, I V" sort="Fedotov, I V" uniqKey="Fedotov I" first="I V" last="Fedotov">I V Fedotov</name>
<name sortKey="Koftina, V A" sort="Koftina, V A" uniqKey="Koftina V" first="V A" last="Koftina">V A Koftina</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000099 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000099 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31258141
   |texte=   [Selenium compounds in redox regulation of inflammation and apoptosis].
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31258141" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020